Advanced Topics in Physics - Vector Problems

1. Write each of the following vectors in rectangular form, i.e. $\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}$:
a) $2 \nleftarrow 60^{\circ}$.
b) $\mathbf{C}=\mathbf{A}+\mathbf{B}$ and $\mathbf{D}=\mathbf{A}-\mathbf{B}$, where $\mathbf{A}=12 \mathbf{i}+7 \mathbf{j}$ and $\mathbf{B}=6 \mathbf{i}-2 \mathbf{j}$.
c) The vector sum of $5 @ 70^{\circ}+3 @ 250^{\circ}$
d) A unit vector @ 30°.
2. Find the magnitude and direction (polar form) of 1 (c).
3. By inspection, write the position vector $\mathbf{r}(t)$ for a particle with each of the following motions, and check your answer using calculus:
a) Stationary at $(3,2)$.
b) Moving in the $+y$ direction with a constant speed of $5 \mathrm{~m} / \mathrm{s}$, starting from $(-3,4)$.
c) Accelerating in the $+x$ direction at $7 \mathrm{~m} / \mathrm{s}^{2}$, starting from $(5,3)$, with an initial velocity of $2 \mathrm{~m} / \mathrm{s} \nsucc 30^{\circ}$.
d) Moving with uniform CCW circular motion, of period 3 s , starting at $(-1,0)$.
e) Moving with uniform CW circular motion, of period 3 s , starting at $(0,-1)$.
4. The position vector $\mathbf{r}(t)$ of a particle is $\mathbf{r}(t)=2 t \mathbf{i}-5 t^{2} \mathbf{j}$. Find the magnitude and direction of the velocity and acceleration at time $t=2 \mathrm{~s}$, and describe the motion. Assume MKS units throughout.
5. Identify each of the following motions of a particle of indicated position vector, giving as many quantities of the motion as you can in each case. Also find $\mathbf{v}(t)$ and $\mathbf{a}(t)$ in each case by differentiating, and compare.
a) $\mathbf{r}(t)=10 \mathbf{i}$
b) $\mathbf{r}(t)=10 t \mathbf{i}$
c) $\mathbf{r}(t)=4 t \mathbf{i}+2 t \mathbf{j}$
d) $\mathbf{r}(t)=3 \cos 2 \pi t \mathbf{i}+3 \sin 2 \pi t \mathbf{j}$
e) $\mathbf{r}(t)=3 \sin 2 \pi t \mathbf{i}+3 \cos 2 \pi t \mathbf{j}$
f) $\mathbf{r}(t)=-3 \cos 2 \pi t \mathbf{i}+3 \sin 2 \pi t \mathbf{j}$
6. Let $\mathbf{A}=3 \mathbf{i}+4 \mathbf{j}$.
a) Write a vector \mathbf{B} that has the same magnitude as \mathbf{A} but is opposite to \mathbf{A}.
b) Write a vector \mathbf{C} that has twice the magnitude of \mathbf{A} and is rotated $90^{\circ} \mathrm{CCW}$ from \mathbf{A}.
c) Write a vector $\hat{\mathbf{E}}$ that has the same direction as \mathbf{A} but has unit magnitude.
7. Show that $\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}$, that is, that the dot product is distributive.
8. By expanding out $|\mathbf{A}-\mathbf{B}|^{2}=(\mathbf{A}-\mathbf{B}) \cdot(\mathbf{A}-\mathbf{B})$ and interpreting the result geometrically, prove the law of cosines; namely, $C^{2}=A^{2}+B^{2}-2 A B \cos \theta$.
9. Using the relationship $\cos \theta=\mathbf{A} \cdot \mathbf{B} / A B$, find the angle between the two vectors $\mathbf{A}=3 \mathbf{i}+4 \mathbf{j}$ and $\mathbf{B}=4 \mathbf{i}+3 \mathbf{j}$. Find a simple way to check your answer.
10. Using two vectors \mathbf{A} and \mathbf{B} making angles ϕ_{1} and ϕ_{2}, respectively, with the x axis, prove that $\cos \left(\phi_{2}-\phi_{1}\right)=\cos \phi_{2} \cos \phi_{1}+\sin \phi_{2} \sin \phi_{1}$.
11. Using two vectors \mathbf{A} and \mathbf{B} making angles ϕ and $-\phi$, respectively, with the x axis, prove that $\cos 2 \phi=\cos ^{2} \phi-\sin ^{2} \phi$.
12. Find the cross product $\mathbf{C}=\mathbf{A} \times \mathbf{B}$, where $\mathbf{A}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and and $\mathbf{B}=\mathbf{i}-\mathbf{j}-\mathbf{k}$. What is the angle between \mathbf{A} and \mathbf{B} ?
13. Show that $\mathbf{A} \times(\mathbf{B}+\mathbf{C})=\mathbf{A} \times \mathbf{B}+\mathbf{A} \times \mathbf{C}$, that is, that the cross product is distributive.
14. Find a unit vector parallel to each of the following vectors:

$$
\mathbf{A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \mathbf{B}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}, \text { and } \mathbf{C}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k} .
$$

15. Find the angle between $\mathbf{A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{B}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}$.
16. Find two vectors perpendicular to both $\mathbf{A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{B}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}$.
17. Show that the following vectors are perpendicular to each other:

$$
\mathbf{A}=\mathbf{i}+4 \mathbf{j}+3 \mathbf{k} \text { and } \mathbf{B}=4 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}
$$

18. Re-do the vector products in problems 12,15 , and 17 using the relationship

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A \mathrm{x} & A \mathrm{y} & A_{\mathrm{z}} \\
B \mathrm{x} & B \mathrm{y} & B_{\mathrm{z}}
\end{array}\right|
$$

19. Show that the "back cab rule"
$\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})$ holds for the vectors
$\mathbf{A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$,
$\mathbf{B}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}$, and
$\mathbf{C}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$.
20. a) Show that the "triple scalar product" $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$ is given by

$$
\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=\left|\begin{array}{lll}
A_{\mathrm{x}} & A_{\mathrm{y}} & A_{\mathrm{z}} \\
B_{\mathrm{x}} & B_{\mathrm{y}} & B_{\mathrm{z}} \\
C_{\mathrm{x}} & C_{\mathrm{y}} & C_{\mathrm{z}}
\end{array}\right|
$$

b) Calculate $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$ for the following vectors:

$$
\begin{aligned}
& \mathbf{A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \\
& \mathbf{B}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}, \text { and } \\
& \mathbf{C}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k} .
\end{aligned}
$$

21. Show that the "triple scalar product" $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$ is unchanged by a cyclic interchange of the vectors \mathbf{A}, \mathbf{B}, and \mathbf{C} :

$$
\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=\mathbf{B} \cdot(\mathbf{C} \times \mathbf{A})=\mathbf{C} \cdot(\mathbf{A} \times \mathbf{B})
$$

Also show that the above result implies that the interchange of the \cdot and \times does not change the value of triple scalar product; namely, $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$.

